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1. Introduction. If N is a positive integer, the Gegenbauer polynomial

C; is known to have the representation [3, vol. 2, p. 175]

No(v) (V)
(1.1) cy(cos ) = £ ——T=- cos( - 2m)e
m=0 m! (N - m)!

where (v)m =T(v + m)/ I'(v). The Fourier series of Gegenbauer's functicn

C;(cos 8) with general (possibly complex) o« does not appear to have been
1

given previously, even in the special case of Legendre's function Pa; Cg .

We shall find that
Cv(c05 ) =3 A + T._, A cos ne (Re v < 1)
(47 0 n=1 "n ’ ’

(1.2) !
r(v+ &) e+ B

s

_ sin m(v+ o+ n)
n {1+ sin v }

[r1° T+ B8 r(1 + &8

If Re v 2 1 the Fourier coefficients do not exist for general o because
C;(cos 8) is not integrable over an interval containing the point 8 = =,
If Re v< 1 and ¢ is a pé?tive integer N, the first factor of An vanishe
if N + n is odd; since A_=A , (1.2) then reduces to (1.1).

We remark that Gegenbauer's function (multiplied by a constant to

1 This work was supported by the'Ames Laboratory of the U. S. Atomic

Energy Commission and by the National Aeronautics and Space Administra-

tion under Grant NsG-293 to Jowa State University.
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give it the value unity at 8 = O) has a nicely symmetrical expression in

the notation of the hypergeometric R function [1]:

(1.3) [(2v) ' + 1)
T(2v + o)

C:;(cos 0) = R(-a; v, v; e, ¢19)

-

_ oV . 4-v _t-v
=2 (v +4) (sin 8) Pa+v_%(cos e) ,

where P is an associated Legendre function. An important special case is

ie -ie

1
(1.4) Cg(cos 8) = R(-o; 4,35 ,e )= Pa(cos e) .

=

2, The Fourier coefficients. Gegenbauer's function is defined [3, vol. 1,

p. 178] by

r(2v) Tl + 1 .28
(2.1) (I"\()%v faa; . Colcos 8) = Fi(= 0y v + 05 v + 35 sin” 5)

® (-0 (2 )
= T O T in®esn) .
m=0 (v + %)m m! ’

4
We assume for the present that Re v < 4 , so that the hypergeometric series

>~

converges absolutely for 8 = 7 [5, p. 25] and hence uniformly over the

interval (O, w). The Fourier coefficient

'

.
(2.2) [ C’(cos 8) cos n® d6
D 44

>
1
E RV

n 4

can then be found by integratirg term by term. From the elementary formula

[N P - _ n 41-2n1(2m
i osin (8/2) cos n8 d8 = (-1) 2 m+n) ,
0

(2.2)
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3.

we get
A = L:j)n 2 T(2v+ o) ; (- Cv')m (2v + 0l)m (%)m
n- () Tle+1 2 (v+3) (mn)! (m-n)!
(2.4) 1
i (-1)" 2 -2n T(2v +a+n) (-0), ; (n = o)y (v +o+n) &+ n)k .
F(2v) T{o + 1) (v +-§-)n n! k=0 (v +% + n)k (1 + 2n), k!

The last series, obtained from the preceding one by putting m = n + k, is
a 3F2 series with unit argument. If Re v < 1 it converges and can be summed

by Watson's theorem [3, vol. 1, p. 189]:

(2.5) 3F2(n -0, 2vV+a+n,3+n;v+34+n,l +2n;1)

1
- 7 n! T'(v + % + n) T'(1 = v) .

Substitution in (2.4) gives an expressicn for An that can be simplified by
applying several times the duplication formuls for the gamma function and

the reletion I'(z) I'(1 - 2) = 7 csc 7z, The result is

(2.6) (-1)" sir 7 sin w(v + & = 2y (v + Q.%,E) rv + % > ny
. A = .
n ;
sin v sie n(&5-0) [rMI° 101+ £32) r(n 4 &30

Elementary rearrangement of the sire functicns now leads to (1.2).

If Re v2 4 the series (2.1) no longer converges uniformly over (C, m)
if it does not termirate. However, the analytic continuation of Gauss! hyper-
gecmetric function {5, p. 291] shows that C;(cos 8) is then of the order of

6)1—?\)

(cos 4 as 8 = 7 (except that the singularity is lcgarithmic if v = 1),



Provided that Re v < 1, the function is integrable over (C, m); furthermore,
it satisfies conditicns [5, p. 164] sufficient to ensure that its Fourier
series converges (excepi when 6 is an odd multiple of 7) and represents the
function.

To show that the Fourier coefficients are still given by (1.2) if
$ S Re v <1, one can either use analytic continuation in v or justify
directly the term-by-term integration of (2.1). The second method is the
easier if one uses the following thecrem [4, p. 45]: If T um(e) converges
uniformly over (C, m - €) for every (small) positive € , and if
r f; |um(6)| d® converges, then T um(e) may be integrated term by term
over (C, 7).

The first assumpticn of the theorem is plairly satisfied by

(=), (2v + @)

u (8) = T 5in?®(8/2) cos n6 .
(v + %)m m}

Moreover, we have

(= o) (v + o)
£ [T lu(®)]de < =z ' O m n T sin*™(8/2) de
0 (v + %) m! 0
(- a) (v +a) &)
=73 | Jul m m ' .

(v + %)m m! m!
The last series converges if Re v < 1, and the proof of (1.2) is now complete.
Eq. (1.3) follows from (2.1) by use of the relation [1, Eq. (2.5)]

(2.7) oFi(a, by e; x) = R(g2; by ¢ = b5 1 - x, 1)

and thre quadratic transformation [2, Eq. (5.1))

2 2
(2.8) R(a; b, b5 x7, y7) = R(a; 2b - a, a=-b+; (x"’Y)Z/ln xy) .
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